Monte carlo configuration interaction applied to multipole moments, ionisation energies and electron affinities

نویسندگان

  • Jeremy P. Coe
  • Daniel J. Taylor
  • Martin J. Paterson
چکیده

The method of Monte Carlo configuration interaction (MCCI) (Greer, J. Chem. Phys. 1995a, 103, 1821; Tong, Nolan, Cheng, and Greer, Comp. Phys. Comm. 2000, 142, 132) is applied to the calculation of multipole moments. We look at the ground and excited state dipole moments in carbon monoxide. We then consider the dipole of NO, the quadrupole of N2 and of BH. An octupole of methane is also calculated. We consider experimental geometries and also stretched bonds. We show that these nonvariational quantities may be found to relatively good accuracy when compared with full configuration interaction results, yet using only a small fraction of the full configuration interaction space. MCCI results in the aug-cc-pVDZ basis are seen to generally have reasonably good agreement with experiment. We also investigate the performance of MCCI when applied to ionisation energies and electron affinities of atoms in an aug-cc-pVQZ basis. We compare the MCCI results with full configuration interaction quantum Monte Carlo (Booth and Alavi, J. Chem. Phys. 2010, 132, 174104; Cleland, Booth, and Alavi, J. Chem. Phys. 2011, 134, 024112) and "exact" nonrelativistic results (Booth and Alavi, J. Chem. Phys. 2010, 132, 174104; Cleland, Booth, and Alavi, J. Chem. Phys. 2011, 134, 024112). We show that MCCI could be a useful alternative for the calculation of atomic ionisation energies however electron affinities appear much more challenging for MCCI. Due to the small magnitude of the electron affinities their percentage errors can be high, but with regards to absolute errors MCCI performs similarly for ionisation energies and electron affinities.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Investigation, Proton and Electron Affinities, Gas Phase Basicities, and Ionization Energies of Captopril

Captopril is one of the most significant angiotensin-converting enzyme inhibitors. In spite of numerous experimental and computational studies on its properties, not enough geometrical and thermodynamic data is available on this compound. So, this study aimed to investigate the structural properties and assignment of possible conformers of captopril in the gas-phase. To this end, 1152 unique tr...

متن کامل

Localization of electron virtual SSD in a Siemens-Primus linear accelerator: Comparison of measurements with Monte Carlo simulation

Introduction: Because of importance of impact of the Source to Surface Distance (SSD) in determining of monitor unit for electron-therapy, it is essential to know the Virtual Source Position (VSP) for electron beam for a linear therapeutic accelerator for each energy and field size. , especially using the Khan method (photo distance squared method) And compare the results with...

متن کامل

(e,2e) collisions at intermediate energies

Recent experimental results will be reviewed for the atomic (e,2e) ionisation process at incident energies in the 'low energy' region, from a few eV to about lO0eV above threshold. This region is particularly interesting because it embodies all the possible complexities that can be present in the electron-impact ionisation process, such as distortions, multiple scattering, correlations, postcol...

متن کامل

An assessment of the Photon Contamination due to Bremsstrahlung Radiation in the Electron Beams of a NEPTUN 10PC Linac using a Monte Carlo Method

Introduction: In clinical electron beams, most of bremsstrahlung radiation is produced by various linac head structures. This bremsstrahlung radiation dose is influenced by the geometry and construction of every component of the linac treatment head structures. Thus, it can be expected that the amount of the contaminated photon dose due to bremsstrahlung radiation varies among different linacs,...

متن کامل

Design and Simulation of Photoneutron Source by MCNPX Monte Carlo Code for Boron Neutron Capture Therapy

Introduction Electron linear accelerator (LINAC) can be used for neutron production in Boron Neutron Capture Therapy (BNCT). BNCT is an external radiotherapeutic method for the treatment of some cancers. In this study, Varian 2300 C/D LINAC was simulated as an electron accelerator-based photoneutron source to provide a suitable neutron flux for BNCT. Materials and Methods Photoneutron sources w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computational chemistry

دوره 34 13  شماره 

صفحات  -

تاریخ انتشار 2013